Les mathématiciens ont trouvé une méthode pour entendre la forme d'une pièce à l'aide de quatre microphones montés sur un drone. Sur la photo :Mireille Boutin. Crédit :Purdue University photo/Brian Powell
De la même manière que les chauves-souris utilisent l'écholocation pour s'orienter avec leur environnement, les mathématiciens ont découvert que la même chose peut être faite avec des microphones et un haut-parleur sur un drone à l'aide de l'algèbre et de la géométrie.
Cette recherche sur le traitement du signal a des applications potentielles pour les personnes, véhicules sous-marins et même voitures, dit Mireille "Mimi" Boutin, professeur agrégé de mathématiques et de génie électrique et informatique à l'Université Purdue.
Boutin et Gregor Kemper, professeur d'algèbre algorithmique au département de mathématiques de l'université technique de Munich, ont travaillé à reconstituer la configuration des murs des pièces en utilisant les échos captés par les microphones du drone.
Lorsqu'un microphone entend un écho, la différence de temps entre le moment où le son a été produit et le moment où il a été entendu est enregistrée. Cette différence de temps montre la distance parcourue par le son après avoir rebondi sur un mur.
Le défi est de déterminer quelle distance correspond à quel mur, un processus appelé echosorting. Le tri des échos avec précision garantit que tous les murs entendus sont vraiment là. Par ici, l'algorithme ne produit pas de murs "fantômes".
Cette recherche est directement liée à deux problématiques complémentaires en ingénierie :la localisation (déterminer où vous vous trouvez dans un environnement) et la cartographie (déterminer la forme de votre environnement).
Les recherches effectuées par Boutin et Kemper prouvent qu'il est possible pour une configuration minimale de quatre microphones disposés dans une forme non plane, avec juste un haut-parleur émettant un signal, pour reconstruire une pièce. Leurs travaux sont publiés dans le Journal SIAM sur l'algèbre appliquée et la géométrie .
Les prochaines étapes seront d'envisager d'autres scénarios, comme lorsque le mouvement du drone est restreint, ou lorsque le drone écoute les échos de sons consécutifs alors qu'il se déplace.
Pratiquement, cette recherche d'écholocation pourrait être appliquée de nombreuses manières. Un tel dispositif pourrait être porté par une personne, fixé sur une voiture, ou même utilisé sous l'eau. Avoir plus d'entrée de signal empêcherait de se fier uniquement à un type d'entrée, comme les caméras de recul de voiture, et améliorer les chances que les objets puissent être détectés avec plus de précision et dans une plus grande variété de conditions.
"De nombreuses applications d'ingénierie nécessitent beaucoup de mathématiques, et parfois vous devez utiliser des outils de domaines mathématiques qui sont considérés comme abstraits - dans ce cas, méthodes de l'algèbre commutative, " dit Boutin.
"C'est considéré comme une partie très abstraite des mathématiques, mais il s'applique à des problèmes d'ingénierie très pratiques. Cela montre à quel point la frontière entre les mathématiques appliquées et abstraites peut être floue, et que l'ingénierie est vraiment une discipline multidisciplinaire."