• Home
  • Chimie
  • Astronomie
  • Énergie
  • La nature
  • Biologie
  • Physique
  • Électronique
  •  science >> Science >  >> Biologie
    Au-delà d'AlphaFold :l'IA excelle dans la création de nouvelles protéines

    Les protéines conçues avec un outil logiciel ultra-rapide appelé ProteinMPNN étaient beaucoup plus susceptibles de se replier comme prévu. Crédit :Ian Haydon, UW Medicine Institute for Protein Design

    Au cours des deux dernières années, l'apprentissage automatique a révolutionné la prédiction de la structure des protéines. Maintenant, trois articles en Science décrivent une révolution similaire dans la conception des protéines.

    Dans les nouveaux articles, des biologistes de la faculté de médecine de l'Université de Washington montrent que l'apprentissage automatique peut être utilisé pour créer des molécules de protéines beaucoup plus précisément et rapidement qu'auparavant. Les scientifiques espèrent que cette avancée débouchera sur de nombreux nouveaux vaccins, traitements, outils de capture du carbone et biomatériaux durables.

    "Les protéines sont fondamentales dans toute la biologie, mais nous savons que toutes les protéines présentes dans chaque plante, animal et microbe représentent bien moins d'un pour cent de ce qui est possible. Grâce à ces nouveaux outils logiciels, les chercheurs devraient être en mesure de trouver des solutions aux longs -des défis permanents en médecine, en énergie et en technologie », a déclaré l'auteur principal David Baker, professeur de biochimie à la faculté de médecine de l'Université de Washington et récipiendaire d'un prix Breakthrough 2021 en sciences de la vie.

    Les protéines sont souvent qualifiées de "blocs de construction de la vie" car elles sont essentielles à la structure et au fonctionnement de tous les êtres vivants. Ils sont impliqués dans pratiquement tous les processus qui se déroulent à l'intérieur des cellules, y compris la croissance, la division et la réparation. Les protéines sont constituées de longues chaînes de substances chimiques appelées acides aminés. La séquence d'acides aminés dans une protéine détermine sa forme tridimensionnelle. Cette forme complexe est cruciale pour le fonctionnement de la protéine.

    Récemment, de puissants algorithmes d'apprentissage automatique, notamment AlphaFold et RoseTTAFold, ont été formés pour prédire les formes détaillées des protéines naturelles en se basant uniquement sur leurs séquences d'acides aminés. L'apprentissage automatique est un type d'intelligence artificielle qui permet aux ordinateurs d'apprendre à partir de données sans être explicitement programmés. L'apprentissage automatique peut être utilisé pour modéliser des problèmes scientifiques complexes qui sont trop difficiles à comprendre pour les humains.

    Pour aller au-delà des protéines présentes dans la nature, les membres de l'équipe de Baker ont divisé le défi de la conception de protéines en trois parties et ont utilisé de nouvelles solutions logicielles pour chacune.

    L'intelligence artificielle a halluciné ces assemblages de protéines symétriques, d'une manière similaire à d'autres A.!. outils génératifs qui produisent une sortie basée sur des invites simples. Crédit :Ian Haydon, UW Medicine Institute for Protein Design

    Tout d'abord, une nouvelle forme de protéine doit être générée. Dans un article publié le 21 juillet dans la revue Science , l'équipe a montré que l'intelligence artificielle peut générer de nouvelles formes de protéines de deux manières. La première, surnommée "hallucination", s'apparente à DALL-E ou à d'autres A.I. génératives. outils qui produisent une sortie basée sur des invites simples. La seconde, appelée "inpainting", est analogue à la fonction de saisie semi-automatique que l'on trouve dans les barres de recherche modernes.

    Deuxièmement, pour accélérer le processus, l'équipe a conçu un nouvel algorithme pour générer des séquences d'acides aminés. Décrit dans le numéro du 15 septembre de Science , cet outil logiciel, appelé ProteinMPNN, s'exécute en une seconde environ. C'est plus de 200 fois plus rapide que le meilleur logiciel précédent. Ses résultats sont supérieurs aux outils précédents et le logiciel ne nécessite aucune personnalisation experte pour fonctionner.

    "Les réseaux de neurones sont faciles à former si vous disposez d'une tonne de données, mais avec les protéines, nous n'avons pas autant d'exemples que nous le souhaiterions. Nous avons dû entrer et identifier les caractéristiques de ces molécules qui sont les plus importantes. était un peu d'essais et d'erreurs », a déclaré le scientifique du projet Justas Dauparas, chercheur postdoctoral à l'Institute for Protein Design

    Troisièmement, l'équipe a utilisé AlphaFold, un outil développé par Alphabet's DeepMind, pour évaluer de manière indépendante si les séquences d'acides aminés qu'ils ont trouvées étaient susceptibles de se plier dans les formes prévues.

    "Les logiciels de prédiction des structures protéiques font partie de la solution, mais ils ne peuvent rien apporter de nouveau à eux seuls", a expliqué Dauparas.

    « ProteinMPNN est à la conception de protéines ce qu'AlphaFold était à la prédiction de la structure des protéines », a ajouté Baker.

    Détail d'une protéine conçue à l'aide d'un outil rapide appelé ProteinMPNN, une autre avancée dans l'utilisation de l'intelligence artificielle et de l'apprentissage automatique dans la conception de protéines. Crédit :Ian Haydon, UW Medicine Institute for Protein Design

    Dans un autre article paru dans Science Le 15 septembre, une équipe du laboratoire Baker a confirmé que la combinaison de nouveaux outils d'apprentissage automatique pouvait générer de manière fiable de nouvelles protéines qui fonctionnaient en laboratoire.

    "Nous avons constaté que les protéines fabriquées à l'aide de ProteinMPNN étaient beaucoup plus susceptibles de se replier comme prévu, et nous pouvions créer des assemblages de protéines très complexes en utilisant ces méthodes", a déclaré le scientifique du projet Basile Wicky, chercheur postdoctoral à l'Institute for Protein Design.

    Parmi les nouvelles protéines fabriquées, il y avait des anneaux à l'échelle nanométrique qui, selon les chercheurs, pourraient devenir des pièces pour des nanomachines personnalisées. Des microscopes électroniques ont été utilisés pour observer les anneaux, qui ont des diamètres environ un milliard de fois plus petits qu'une graine de pavot.

    "C'est le tout début de l'apprentissage automatique dans la conception de protéines. Dans les mois à venir, nous travaillerons à l'amélioration de ces outils pour créer des protéines encore plus dynamiques et fonctionnelles", a déclaré Baker.

    Les ressources informatiques pour ce travail ont été données par Microsoft et Amazon Web Services. + Explorer plus loin

    Des biologistes forment l'IA pour générer des médicaments et des vaccins




    © Science https://fr.scienceaq.com