Les problèmes de mots mettent à l'épreuve vos compétences en calcul ainsi que vos compétences en compréhension à la lecture. Pour y répondre correctement, vous devrez examiner les questions attentivement. Assurez-vous toujours de savoir ce qui est demandé, quelles opérations sont nécessaires et quelles unités, le cas échéant, vous devez inclure dans votre réponse.
Éliminer les données superflues
Parfois, les problèmes de mots incluent des données superflues. pas nécessaire pour résoudre le problème. Par exemple:
Kim a remporté 80% de ses matchs en juin et 90% de ses matchs en juillet. Si elle a remporté 4 parties en juin et 10 parties en juillet, combien de parties Kim a-t-elle remportées en juillet?
Sciencing Video Vault
Créez la tranche (presque) parfaite: Voici comment créer la (presque) parenthèse parfaite: voici comment.
Le moyen le plus simple d’éliminer les données superflues consiste à identifier la question; dans ce cas, "Combien de jeux Kim a-t-il remportés en juillet?" Dans l'exemple ci-dessus, toute information qui ne concerne pas le mois de juillet est inutile pour répondre à la question. Il vous reste 90% de 10 jeux, ce qui vous permet de faire un calcul simple:
0.9 * 10 = 9 jeux - Calculer des données supplémentaires
Lisez la partie question deux fois pour vous en assurer. vous savez quelles sont les données dont vous avez besoin pour répondre à la question:
Lors d'un test avec 80 questions, Abel s'est trompé 4 fois. Quel pourcentage de questions a-t-il bien compris?
Le mot problème ne vous donnant que deux chiffres, il serait donc facile de supposer que les questions comportent ces deux chiffres. Cependant, dans ce cas, la question nécessite que vous calculiez d'abord une autre réponse: le nombre de questions qu'Abel a bien résolues. Vous devrez soustraire 4 à 80, puis calculer le pourcentage de la différence:
80-4 = 78, et 78/80 * 100 = 97,5% pour reformuler des problèmes difficiles
N'oubliez pas que vous pouvez souvent réorganiser les problèmes pour les simplifier. Ceci est particulièrement utile si vous n'avez pas de calculatrice disponible:
Gina doit obtenir au moins 92% des points à son examen final pour obtenir un A pour le semestre. S'il y a 200 questions à l'examen, combien de questions Gina doit-elle bien résoudre pour obtenir un A?
L'approche standard serait de multiplier 200 par 0,92: 200 * 0,92 = 184. Bien qu'il s'agisse d'un processus simple, vous pouvez le rendre encore plus simple. Au lieu de trouver 92% de 200, trouvez 200% de 92 en le doublant:
92 * 2 = 184
Cette méthode est particulièrement utile lorsque vous utilisez des nombres dont les ratios sont connus. Si, par exemple, le mot problème vous demandait de trouver 77% des 50%, vous pourriez simplement trouver 50% des 77:
50 * .77 = 38,5, ou 77/2 = 38,5
Compte pour Unités
Convertissez vos réponses en unités appropriées:
Cassie fonctionne de 7h à 16h. chaque jour de la semaine. Si Cassie travaillait 82% de son quart mercredi et 100% de ses autres quarts de travail, quel pourcentage de la semaine lui manquait-elle? Combien de temps a-t-elle travaillé au total?
Calculez d'abord le nombre d'heures travaillées par jour par Cassie, en tenant compte de midi, puis par semaine:
4+ (12-7) = 9 9 * 5 = 45
Ensuite, calculez 82% des 9 heures suivantes:
0.82 * 9 = 7.38
Soustrayez le produit de 9 pour le total des heures manquées:
9-7.38 = 1.62
Calculez le pourcentage de la semaine qu'elle a manquée:
1.62 /45 * 100 = 3.6 pour cent
La deuxième question demande une quantité de temps, ce qui signifie que vous aurez besoin de convertir la décimale en incréments de temps. Ajoutez le produit aux quatre autres jours de travail:
7.38+ (9 * 4) = 43,38
Convertissez le nombre décimal en minutes:
0.38 * 60 = 22.8
Convertissez le nombre décimal restant en secondes:
0.8 * 60 = 48
Alors Cassie a manqué 3,6% de sa semaine et a travaillé 43 heures, 22 minutes et 48 secondes au total.