Les erreurs d’échantillonnage sont les différences apparemment aléatoires entre les caractéristiques d’une population échantillonnée et celles de la population générale. Par exemple, une étude de la participation à une réunion mensuelle révèle un taux moyen de 70%. La participation à certaines réunions serait certainement plus faible pour certains que pour d'autres. L’erreur d’échantillonnage est qu’alors que vous pouvez compter le nombre de personnes présentes à chaque réunion, ce qui se passe réellement en termes de participation à une réunion n’est pas identique à celui de la réunion suivante, même si les règles ou probabilités sous-jacentes sont les mêmes. Les clés pour minimiser les erreurs d’échantillonnage sont les observations multiples et les échantillons plus grands.
Réduisez au minimum le risque de biais dans la sélection de l’échantillon par le biais d’un échantillonnage aléatoire. L'échantillonnage aléatoire n'est pas un échantillonnage aléatoire, mais une approche systématique de la sélection d'un échantillon. Par exemple, un échantillon aléatoire d'une population de jeunes délinquants est généré en sélectionnant des noms dans une liste à interroger. Avant de voir la liste, le chercheur a identifié les jeunes délinquants à interroger comme ceux dont le nom apparaît en premier, les 10, 20, 30, 40, etc. sur la liste.
Assurez-vous que l'échantillon est représentatif de la population en mettant en œuvre un protocole de stratification. Par exemple, si vous étudiez les habitudes de consommation d'alcool des étudiants, vous pourriez vous attendre à des différences entre les étudiants de fraternité et les étudiants ne faisant pas partie de la fraternité. Le fractionnement initial de votre échantillon en deux strates réduit le risque d'erreur d'échantillonnage.
Sciencing Video Vault
Créez le support (presque) parfait: Voici comment créer le support (presque) parfait: Voici comment
Utilisez des échantillons de taille supérieure. Au fur et à mesure que la taille augmente, l'échantillon se rapproche de la population réelle, ce qui réduit le risque d'écarts par rapport à la population réelle. Par exemple, la moyenne d'un échantillon de 10 varie plus que la moyenne d'un échantillon de 100. Toutefois, les échantillons plus volumineux impliquent des coûts plus élevés.
Répliquez votre étude en prenant plusieurs fois la même mesure, en utilisant plus de un sujet ou plusieurs groupes, ou en entreprenant plusieurs études. La réplication vous permet d'éliminer les erreurs d'échantillonnage.