La série Balmer dans un atome d'hydrogène relie les transitions électroniques possibles jusqu'à la position n TL; DR (trop long; n'a pas lu) Calculez la longueur d'onde des transitions de la série Hydrogène Balmer en fonction de: 1 / λ Où λ La formule de Rydberg relie la longueur d'onde des émissions observées à les principaux nombres quantiques impliqués dans la transition: 1 / λ Le symbole λ La série Balmer définit simplement n 1 / λ Le La première étape du calcul consiste à trouver le nombre quantique principal pour la transition que vous envisagez. Cela signifie simplement mettre une valeur numérique sur le "niveau d'énergie" que vous envisagez. Ainsi, le troisième niveau d'énergie a n Commencez par calculer la partie de l'équation entre parenthèses: (1/2 2) - (1 / n Tout ce dont vous avez besoin est la valeur pour n (1/2 2) - (1 / n \u003d (1/4) - (1/16) \u003d 3 /16 Multipliez le résultat de la section précédente par la constante de Rydberg, R H 1 / λ \u003d 1,0968 × 10 7 m - 1 × 3/16 \u003d 2 056 500 m - 1 Trouvez la longueur d'onde pour la transition en divisant 1 par le résultat de la section précédente. Parce que la formule de Rydberg donne la longueur d'onde réciproque, vous devez prendre l'inverse du résultat pour trouver la longueur d'onde. Donc, en continuant l'exemple: λ \u003d 4,86 × 10 - 7 m \u003d 486 nanomètres Cela correspond à la longueur d'onde établie émise dans cette transition sur la base d'expériences.
\u003d 2 à la longueur d'onde de l'émission que les scientifiques observent. En physique quantique, lorsque les électrons effectuent une transition entre différents niveaux d'énergie autour de l'atome (décrit par le nombre quantique principal, n
), ils libèrent ou absorbent un photon. La série Balmer décrit les transitions des niveaux d'énergie supérieurs au deuxième niveau d'énergie et les longueurs d'onde des photons émis. Vous pouvez le calculer à l'aide de la formule de Rydberg.
\u003d R H
((1/2 2) - (1 / n
2 2))
est la longueur d'onde, R H
\u003d 1,0968 × 10 7 m - 1 et n
2 est le nombre quantique principal de l'état à partir duquel les électrons passent.
La formule de Rydberg et la formule de Balmer
\u003d R H
((1 / n
1 2) - (1 / n
2 2))
représente la longueur d'onde, et R H
est la constante de Rydberg pour l'hydrogène, avec R H
\u003d 1,0968 × 10 7 m - 1. Vous pouvez utiliser cette formule pour toutes les transitions, pas seulement celles impliquant le deuxième niveau d'énergie.
1 \u003d 2, ce qui signifie la valeur de la le nombre quantique principal ( n
) est deux pour les transitions considérées. La formule de Balmer peut donc s'écrire:
\u003d R H
((1/2 2) - (1 / n
2 2))
Calcul d'une longueur d'onde de la série Balmer
\u003d 3, le quatrième a n
\u003d 4 et ainsi de suite. Ceux-ci vont à l'endroit pour n
2 dans les équations ci-dessus.
2 2)
2 que vous avez trouvé dans la section précédente. Pour n
2 \u003d 4, vous obtenez:
2 2) \u003d (1/2 2) - (1/4 2)
\u003d 1.0968 × 10 7 m - 1, pour trouver une valeur pour 1 / λ
. La formule et l'exemple de calcul donnent:
\u003d R H
((1/2 2) - (1 /< em> n
2 2))
\u003d 1/2 056 500 m - 1