• Home
  • Chimie
  • Astronomie
  • Énergie
  • La nature
  • Biologie
  • Physique
  • Électronique
  •  Science >> Science >  >> Physique
    Une balle de 30 g est tirée horizontalement avec une vitesse initiale V0 vers un 85 qui suspendait immobile à une corde de 1,2 m de long. Les balles subissent une collision de front parfaitement élastique après quoi le?
    Décomposons ce problème de physique étape par étape.

    1. Comprendre le problème

    Nous avons un problème de collision classique avec quelques éléments clés:

    * balle 1: 30 g (0,03 kg) balle, se déplaçant horizontalement avec la vitesse initiale V0.

    * balle 2: 85 g (0,085 kg) balle, suspendu immobile.

    * collision: Parfaitement élastique, ce qui signifie que l'énergie cinétique est conservée.

    * chaîne: 1,2 m de long, tenant la balle 2.

    2. Conservation de l'élan

    Dans une collision parfaitement élastique, l'élan et l'énergie cinétique sont conservés. Concentrons-nous d'abord sur l'élan:

    * avant la collision: L'élan total n'est que l'élan de la balle 1:

    p_initial =m1 * v0

    * après la collision: L'élan total est l'élan combiné des deux balles:

    p_final =m1 * v1 + m2 * v2

    (où V1 et V2 sont les vitesses finales des balles 1 et 2, respectivement).

    Étant donné que l'élan est conservé, p_initial =p_final:

    M1 * V0 =M1 * V1 + M2 * V2

    3. Conservation de l'énergie cinétique

    Maintenant, considérons l'énergie cinétique:

    * avant la collision:

    Ke_initial =1/2 * m1 * v0²

    * après la collision:

    Ke_final =1/2 * m1 * v1² + 1/2 * m2 * v2²

    Étant donné que l'énergie cinétique est conservée, ke_initial =ke_final:

    1/2 * M1 * V0² =1/2 * M1 * V1² + 1/2 * M2 * V2²

    4. Résoudre pour les vitesses finales

    Nous avons maintenant deux équations et deux inconnues (V1 et V2). La résolution de ces équations simultanément nous donnera les vitesses finales:

    * Équation 1 (Momentum): M1 * V0 =M1 * V1 + M2 * V2

    * Équation 2 (énergie cinétique): 1/2 * M1 * V0² =1/2 * M1 * V1² + 1/2 * M2 * V2²

    La solution est:

    * v1 =(m1 - m2) / (m1 + m2) * v0

    * v2 =(2 * m1) / (m1 + m2) * v0

    5. La question

    L'invite demande le après quoi le ... Il semble que la question soit incomplète. Pour continuer, nous devons savoir ce que vous recherchez:

    * qu'advient-il de la deuxième balle? Nous pouvons utiliser l'équation pour V2 pour trouver sa vitesse finale et calculer la hauteur qu'il oscille après la collision.

    * Quelle est la vitesse finale de la première balle? Nous pouvons utiliser l'équation pour V1 pour trouver sa vitesse finale.

    Veuillez fournir le reste de la question afin que je puisse vous donner une réponse complète!

    © Science https://fr.scienceaq.com