Un étudiant en physique peut rencontrer la gravité en physique de deux manières différentes: comme l'accélération due à la gravité sur Terre ou d'autres corps célestes, ou comme la force d'attraction entre deux objets dans l'univers. En effet, la gravité est l'une des forces les plus fondamentales de la nature.
Sir Isaac Newton a développé des lois pour décrire les deux. La deuxième loi de Newton ( F net \u003d ma La force gravitationnelle subie par un objet dans un champ gravitationnel est toujours dirigée vers le centre de la masse qui génère le champ, comme le centre de la Terre. En l’absence de toute autre force, elle peut être décrite en utilisant la relation newtonienne F net \u003d ma Tout objet à l'intérieur d'une gravitation champ, comme toutes les roches sur Mars, subissent la même accélération vers le centre du champ La force de gravité est La deuxième loi de Newton, F net \u003d ma Près de la surface de la Terre, cette constante reçoit sa propre variable spéciale: g Sur Terre, la force de gravité sur un objet de masse m F grav \u003d mg Les astronautes atteignent une planète lointaine et constatent qu'il faut huit fois plus de force pour soulevez des objets là-bas que sur Terre. Quelle est l'accélération due à la gravité sur cette planète? Sur cette planète, la force de gravité est huit fois plus importante. Puisque les masses d'objets sont une propriété fondamentale de ces objets, elles ne peuvent pas changer, cela signifie que la valeur de g 8F grav \u003d m (8g) La valeur de g La deuxième des lois de Newton qui s'appliquent à la compréhension de la gravité en physique résulte de la perplexité de Newton à travers les découvertes d'un autre physicien. Il essayait d'expliquer pourquoi les planètes du système solaire ont des orbites elliptiques plutôt que des orbites circulaires, comme observé et décrit mathématiquement par Johannes Kepler dans son ensemble de lois éponymes. Newton a déterminé que les attractions gravitationnelles entre les planètes telles qu'elles se sont rapprochés et plus éloignés les uns des autres jouaient dans le mouvement des planètes. Ces planètes étaient en fait en chute libre. Il a quantifié cette attraction dans sa loi universelle de la gravitation: Où F grav _again est la force de gravité en Newtons (N), _m 1 La variable G L'équation montre deux relations importantes: La théorie de Newton est également connue comme une loi carrée inverse en raison du deuxième point ci-dessus. Il explique pourquoi l'attraction gravitationnelle entre deux objets diminue rapidement lorsqu'ils se séparent, beaucoup plus rapidement que si l'on modifiait la masse de l'un ou des deux. force d'attraction entre une comète de 8 000 kg et 70 000 m d'une comète de 200 kg? Newton l'a fait travail étonnant prédisant le mouvement des objets et quantifiant la force de gravité dans les années 1600. Mais environ 300 ans plus tard, un autre grand esprit - Albert Einstein - a contesté cette pensée avec une nouvelle façon et une façon plus précise de comprendre la gravité. Selon Einstein, la gravité est une distorsion de l'espace-temps La théorie de la relativité générale d'Einstein a fait ses preuves en expliquant pourquoi Mercure, la minuscule planète la plus proche du soleil dans notre système solaire, a une orbite avec une différence mesurable par rapport aux prévisions des lois de Newton. Bien que la relativité générale explique plus précisément la gravité que les lois de Newton, la différence dans les calculs utilisant l'une ou l'autre n'est perceptible pour la plupart que sur des échelles "relativistes" - en regardant des objets extrêmement massifs dans le cosmos, ou à des vitesses proches de la lumière . Par conséquent, les lois de Newton restent utiles et pertinentes aujourd'hui pour décrire de nombreuses situations du monde réel que l'homme moyen est susceptible de rencontrer. La partie "universelle" de la loi universelle de la gravitation de Newton n'est pas hyperbolique. Cette loi s'applique à tout dans l'univers avec une masse! Deux particules attirent l'une l'autre, tout comme deux galaxies. Bien sûr, à des distances suffisamment grandes, l'attraction devient si petite qu'elle est effectivement nulle. Étant donné l'importance de la gravité pour décrire comment toute la matière interagit
) s'applique à toute force nette agissant sur un objet, y compris la force de gravité subie dans les paramètres régionaux de tout grand corps, comme une planète. La loi de Newton de la gravitation universelle, une loi carrée inverse, explique l'attraction ou l'attraction gravitationnelle entre deux objets.
Force of Gravity
, où F net
est la force de gravité en newtons ( N), m
est la masse en kilogrammes (kg) et a
est l'accélération due à la gravité en m /s 2.
agissant sur leurs masses.
Ainsi, le seul facteur qui modifie la force de gravité ressentie par différents objets sur la même planète sont leur masse: plus il y a de masse, plus la force de gravité est grande et vice versa.
son poids en physique, bien que familièrement le poids soit souvent utilisé différemment.
Accélération due à la gravité
, montre qu'une force nette fait accélérer une masse. Si la force nette provient de la gravité, cette accélération est appelée accélération due à la gravité; pour les objets proches de grands corps particuliers comme les planètes, cette accélération est approximativement constante, ce qui signifie que tous les objets tombent avec la même accélération.
. "Little g", comme g
est souvent appelé, a toujours une valeur constante de 9,8 m /s 2. (L'expression "petit g" distingue cette constante d'une autre constante gravitationnelle importante, G
, ou "grand G", qui s'applique à la loi universelle de la gravitation.) Tout objet tombé près de la surface de la Terre sera tomber vers le centre de la Terre à un rythme toujours croissant, chaque seconde allant 9,8 m /s plus vite que la seconde précédente.
est:
Exemple avec gravité
doit également être huit fois plus grande:
sur Terre est de 9,8 m /s 2, donc 8 × 9,8 m /s 2 \u003d 78,4 m /s 2.
La loi universelle de la gravitation de Newton
F_ {grav} \u003d G \\ frac {m_1m_2} {r ^ 2}
et m 2
sont les masses des premier et deuxième objets, respectivement, en kilogrammes (kg) (par exemple, la masse de la Terre et la masse de l'objet près de la Terre), et d 2
est le carré de la distance entre eux en mètres (m).
, appelé «grand G», est la constante gravitationnelle universelle. Il a la même valeur partout dans l'univers. Newton n'a pas découvert la valeur de G (Henry Cavendish l'a trouvé expérimentalement après la mort de Newton), mais il a trouvé la proportionnalité de la force à la masse et à la distance sans elle.
qu'elle l'est maintenant, la force d'attraction entre la Terre et la lune doublerait
, la force d'attraction quadruple
chaque fois que les objets sont deux fois plus proches
. Si la lune était soudainement la moitié de la distance
de la Terre telle qu'elle est maintenant, la force d'attraction entre la Terre et la lune serait quatre fois plus importante.
Exemple avec la loi universelle de gravitation de Newton
\\ begin {aligné} F_ {grav} &\u003d 6,674 × 10 ^ {- 11} \\ frac {m ^ 3} {kgs ^ 2} (\\ dfrac {8 000 kg × 200 kg} {70 000 ^ 2}) \\\\ &\u003d 2,18 × 10 ^ {- 14} \\ end {aligné} Théorie de la relativité générale d'Albert Einstein
, le tissu de l'univers lui-même. L'espace de déformation de masse, comme une boule de bowling crée un retrait sur un drap de lit, et des objets plus massifs comme des étoiles ou des trous noirs déforment l'espace avec des effets facilement observables dans un télescope - la flexion de la lumière ou un changement de mouvement d'objets proches de ces masses .
La gravité est importante
, les définitions anglaises courantes de la gravité
(selon Oxford: "importance extrême ou alarmante; gravité") ou gravitas
("dignité, gravité ou solennité de manière") revêtent une importance supplémentaire. Cela dit, lorsque quelqu'un fait référence à la "gravité d'une situation", un physicien peut encore avoir besoin de clarification: veut-il dire en termes de gros G ou de petit g?