Les matériaux de revêtement LIGO à tester sont déposés sur des disques de verre minces, beaucoup plus petit que les miroirs LIGO. La couleur rosâtre sur la photo est due à la fine couche d'oxyde métallique déposée à la surface. Crédit :Caltech
Depuis la détection révolutionnaire du Laser Interferometer Gravitational-wave Observatory (LIGO), en 2015, d'ondes gravitationnelles produites par une paire de trous noirs en collision, l'observatoire, avec son site partenaire européen Virgo, a détecté des dizaines de grondements cosmiques similaires qui envoient des ondulations à travers l'espace et le temps.
À l'avenir, à mesure que de plus en plus de mises à niveau sont apportées aux observatoires LIGO financés par la National Science Foundation, l'un à Hanford, Washington, et l'autre à Livingston, Louisiane - les installations devraient détecter un nombre de plus en plus important de ces événements cosmiques extrêmes. Ces observations aideront à résoudre les mystères fondamentaux de notre univers, comme la formation des trous noirs et la fabrication des ingrédients de notre univers.
Un facteur important pour augmenter la sensibilité des observatoires concerne les revêtements sur les miroirs en verre qui se trouvent au cœur des instruments. Chaque miroir de 40 kilogrammes (88 livres) (il y en a quatre dans chaque détecteur dans les deux observatoires LIGO) est recouvert de matériaux réfléchissants qui transforment essentiellement le verre en miroirs. Les miroirs réfléchissent les faisceaux laser sensibles au passage des ondes gravitationnelles.
Généralement, plus les miroirs sont réfléchissants, plus l'instrument est sensible, mais il y a un hic :les revêtements qui rendent les miroirs réfléchissants peuvent également entraîner un bruit de fond dans l'instrument, un bruit qui masque les signaux d'ondes gravitationnelles d'intérêt.
Maintenant, une nouvelle étude de l'équipe LIGO décrit un nouveau type de revêtement miroir composé d'oxyde de titane et d'oxyde de germanium, et décrit comment il peut réduire le bruit de fond dans les miroirs de LIGO par un facteur de deux, augmentant ainsi le volume d'espace que LIGO peut sonder par un facteur de huit.
« Nous voulions trouver un matériau à la limite de ce qui est possible aujourd'hui, " dit Gabriele Vajente, un chercheur principal de LIGO à Caltech et auteur principal d'un article sur les travaux publiés dans la revue Lettres d'examen physique . "Notre capacité à étudier l'échelle astronomiquement grande de l'univers est limitée par ce qui se passe dans ce très petit espace microscopique."
"Avec ces nouveaux revêtements, nous espérons pouvoir augmenter le taux de détection des ondes gravitationnelles d'une fois par semaine à une fois par jour ou plus, " dit David Reitze, directeur exécutif du laboratoire LIGO à Caltech.
La recherche, qui pourraient avoir des applications futures dans les domaines des télécommunications et des semi-conducteurs, était une collaboration entre Caltech; Université d'État du Colorado; l'Université de Montréal; et l'Université de Stanford, dont le synchrotron du SLAC National Accelerator Laboratory a été utilisé pour la caractérisation des revêtements.
LIGO détecte les ondulations dans l'espace-temps à l'aide de détecteurs appelés interféromètres. Dans cette configuration, un puissant faisceau laser est divisé en deux :chaque faisceau descend d'un bras d'une grande enceinte à vide en forme de L vers des miroirs distants de 4 kilomètres. Les miroirs renvoient les faisceaux laser vers la source d'où ils proviennent. Au passage des ondes gravitationnelles, ils s'étendront et serreront l'espace par des quantités presque imperceptibles et pourtant détectables (beaucoup moins que la largeur d'un proton). Les perturbations modifient le moment de l'arrivée des deux faisceaux laser à la source.
Tout tremblement dans les miroirs eux-mêmes, même les vibrations thermiques microscopiques des atomes dans les revêtements des miroirs, peut affecter le moment de l'arrivée des faisceaux laser et rendre difficile l'isolement des signaux d'ondes gravitationnelles.
"Chaque fois que la lumière passe entre deux matériaux différents, une fraction de cette lumière est réfléchie, " dit Vajente. " C'est la même chose qui se passe dans vos fenêtres :vous pouvez voir votre faible reflet dans le verre. En ajoutant plusieurs couches de matériaux différents, nous pouvons renforcer chaque reflet et rendre nos miroirs réfléchissants jusqu'à 99,999%."
"Ce qui est important dans ce travail, c'est que nous avons développé une nouvelle façon de mieux tester les matériaux, " dit Vajente. " Nous pouvons maintenant tester les propriétés d'un nouveau matériau en environ huit heures, entièrement automatisé, quand avant cela prenait presque une semaine. Cela nous a permis d'explorer le tableau périodique en essayant beaucoup de matériaux différents et beaucoup de combinaisons. Certains des matériaux que nous avons essayés n'ont pas fonctionné, mais cela nous a donné un aperçu des propriétés qui pourraient être importantes."
À la fin, les scientifiques ont découvert qu'un matériau de revêtement composé d'une combinaison d'oxyde de titane et d'oxyde de germanium dissipait le moins d'énergie (l'équivalent de la réduction des vibrations thermiques).
"Nous avons adapté le processus de fabrication pour répondre aux exigences strictes en matière de qualité optique et de réduction du bruit thermique des revêtements de miroir, " dit Carmen Menoni, professeur à la Colorado State University et membre de la LIGO Scientific Collaboration. Menoni et ses collègues de l'État du Colorado ont utilisé une méthode appelée pulvérisation cathodique par faisceau d'ions pour recouvrir les miroirs. Dans ce processus, des atomes de titane et de germanium sont décollés d'une source, combiné avec de l'oxygène, puis déposé sur le verre pour créer de fines couches d'atomes.
Le nouveau revêtement peut être utilisé pour le cinquième cycle d'observation de LIGO, qui débutera au milieu de la décennie dans le cadre du programme Advanced LIGO Plus. Pendant ce temps, Quatrième run d'observation de LIGO, le dernier de la campagne Advanced LIGO, devrait débuter à l'été 2022.
« Ceci change la donne pour Advanced LIGO Plus, " dit Reitze. " Et c'est un excellent exemple de la façon dont LIGO s'appuie fortement sur l'optique de pointe et la recherche et le développement en science des matériaux. Il s'agit de la plus grande avancée dans le développement de revêtements optiques de précision pour LIGO au cours des 20 dernières années."