Un château de sable sur la plage qui est maintenu par le processus universel appelé condensation capillaire. Crédit : « Bonjour, je suis Nik » sur Unsplash
La vapeur d'eau de l'air ambiant se condensera spontanément à l'intérieur des matériaux poreux ou entre les surfaces en contact. Mais avec la couche liquide n'ayant que quelques molécules d'épaisseur, ce phénomène a manqué de compréhension, jusqu'à maintenant.
Des chercheurs de l'Université de Manchester dirigés par le lauréat du prix Nobel Andre Geim—qui, avec Kostia Novoselov, a reçu le prix Nobel de physique il y a 10 ans ce mois-ci - ont fabriqué des capillaires artificiels suffisamment petits pour que la vapeur d'eau s'y condense normalement, conditions ambiantes.
L'étude de Manchester s'intitule "Condensation capillaire sous confinement à l'échelle atomique, " et sera publié dans La nature . La recherche fournit une solution au casse-tête vieux de 150 ans qui explique pourquoi la condensation capillaire, un phénomène fondamentalement microscopique impliquant quelques couches moléculaires d'eau, peut être raisonnablement bien décrit à l'aide d'équations macroscopiques et de caractéristiques macroscopiques de l'eau en vrac. Est-ce une coïncidence ou une loi cachée de la nature ?
Des propriétés telles que le frottement, adhésion, friction, la lubrification et la corrosion sont fortement affectées par la condensation capillaire. Ce phénomène est important dans de nombreux procédés technologiques utilisés par la microélectronique, pharmaceutique, l'alimentation et d'autres industries - et même les châteaux de sable ne pourraient pas être construits sans la condensation capillaire.
Scientifiquement, le phénomène est souvent décrit par l'équation de Kelvin vieille de 150 ans qui s'est avérée remarquablement précise, même pour des capillaires aussi petits que 10 nanomètres, un millième de la largeur d'un cheveu humain. Toujours, pour que la condensation se produise sous une humidité normale de, disons, 30% à 50%, les capillaires doivent être beaucoup plus petits, d'une taille d'environ 1 nm. Ceci est comparable au diamètre des molécules d'eau (environ 0,3 nm), de sorte que seules quelques couches moléculaires d'eau peuvent s'insérer à l'intérieur des pores responsables des effets de condensation courants.
L'équation macroscopique de Kelvin ne pouvait pas être justifiée pour décrire des propriétés impliquant l'échelle moléculaire et, En réalité, l'équation a peu de sens à cette échelle. Par exemple, il est impossible de définir la courbure d'un ménisque d'eau, qui entre dans l'équation, si le ménisque n'a que quelques molécules de large. Par conséquent, l'équation de Kelvin a été utilisée comme approche du pauvre, faute d'une description appropriée. Les progrès scientifiques ont été entravés par de nombreux problèmes expérimentaux et, en particulier, par une rugosité de surface qui rend difficile la fabrication et l'étude de capillaires de tailles à l'échelle moléculaire requise.
Pour créer de tels capillaires, les chercheurs de Manchester ont minutieusement assemblé des cristaux atomiquement plats de mica et de graphite. Ils ont mis deux de ces cristaux l'un sur l'autre avec d'étroites bandes de graphène, un autre cristal atomiquement mince et plat, étant placé entre les deux. Les bandes servaient d'entretoises et pouvaient être d'épaisseurs différentes. Cet assemblage tricouche permettait des capillaires de différentes hauteurs. Certains d'entre eux n'avaient qu'un atome de haut, les plus petits capillaires possibles, et pourrait accueillir une seule couche de molécules d'eau.
Les expériences de Manchester ont montré que l'équation de Kelvin peut décrire la condensation capillaire même dans les plus petits capillaires, au moins qualitativement. Ce n'est pas seulement surprenant, mais contredit les attentes générales car l'eau change ses propriétés à cette échelle et sa structure devient distinctement discrète et stratifiée.
« Cela a été une grande surprise. Je m'attendais à un effondrement complet de la physique conventionnelle, " a déclaré le Dr Qian Yang, l'auteur principal de la La nature rapport. "L'ancienne équation s'est avérée bien fonctionner. Un peu décevante mais aussi excitante pour enfin résoudre le mystère centenaire.
"Pour que nous puissions nous détendre, tous ces nombreux effets de condensation et propriétés associées sont désormais étayés par des preuves tangibles plutôt que par une intuition selon laquelle « cela semble fonctionner, donc il devrait être acceptable d'utiliser l'équation ».
Les chercheurs de Manchester soutiennent que l'accord, bien que qualitative, est aussi fortuit. Les pressions impliquées dans la condensation capillaire sous humidité ambiante dépassent 1, 000 bars, plus que cela au fond de l'océan le plus profond. De telles pressions amènent les capillaires à ajuster leurs tailles d'une fraction d'angström, ce qui est suffisant pour ne loger qu'un nombre entier de couches moléculaires à l'intérieur. Ces ajustements microscopiques suppriment les effets de commensurabilité, permettant à l'équation de Kelvin de bien tenir.
"Une bonne théorie fonctionne souvent au-delà de ses limites d'applicabilité, " dit Geim. " Lord Kelvin était un scientifique remarquable, faire de nombreuses découvertes, mais même lui serait sûrement surpris de découvrir que sa théorie – à l'origine en considérant des tubes de taille millimétrique – tient même à l'échelle d'un atome. En réalité, dans son article fondateur, Kelvin a commenté exactement cette impossibilité. Notre travail lui a donc prouvé à la fois raison et tort, à la fois."