En mathématiques, une fonction est un processus que vous appliquez à une variable indépendante x pour obtenir la variable dépendante y. Si vous le considérez comme «allant de» votre x pour arriver à votre y, une fonction inverse va dans le sens inverse, du résultat à la valeur d'origine. Dans un sens, une fonction inverse est l'opposé de l'original, "annulant" le processus.
TL; DR (Trop long; n'a pas lu)
Un inverse d'une fonction mathématique inverse les rôles de y et x dans la fonction d'origine.
Fonctions et inverses
Les mathématiciens définissent une fonction comme un processus ou une règle qui génère les paires ordonnées d'un ensemble. Vous pouvez considérer le premier membre de la paire comme le x de la fonction et le deuxième membre comme le y. Dans une fonction vraie, la première valeur n'a qu'une seule valeur de solution qui va avec. Ainsi, chaque valeur x n'a qu'une seule valeur y correspondante. Donc, l'équation pour la ligne horizontale, y \u003d 1 est une fonction, mais la ligne verticale, x \u003d 1 ne l'est pas.
Tracer un graphique
Le graphique d'une fonction et son inverse sont des reflets de un autre, avec une ligne représentant y \u003d x agissant comme le "miroir". Pour prendre un exemple, le graphique de la fonction de logarithme naturel, ln (x), commence à l'infini négatif sur l'axe y et juste à droite de zéro sur l'axe x. De là, il traverse l'axe des x au point (1,0) et a une courbe légèrement ascendante sur l'axe des x. Son inverse, la fonction d'exposant naturel exp (x), a l'axe des abscisses comme asymptote, commençant à l'infini négatif sur l'axe des x, juste au-dessus. Il croise l'axe y en (0,1) et se courbe fortement vers le haut. Dessinez les deux fonctions sur un graphique, puis tracez la ligne y \u003d x, et vous verrez que exp (x) et ln (x) se reflètent.
Sinus et Cosinus
Bien que le sinus et les fonctions cosinus sont liées, l'une n'est pas l'inverse de l'autre. Les fonctions sinus et cosinus produisent des résultats graphiques similaires, bien que le cosinus "entraîne" le sinus de 90 degrés. De plus, le cosinus est la dérivée du sinus. Cependant, l'inverse de la fonction sinus est l'arc sinus et l'inverse du cosinus est l'arc cosinus.
Recherche d'une fonction inverse
Il est relativement facile de trouver l'inverse de nombreuses fonctions: échangez le " y "et" x "dans l'équation, puis résolvez pour y. Par exemple, considérons l'équation y \u003d 2x + 4. L'échange de y pour x donne x \u003d 2y + 4. Soustrayez 4 des deux côtés pour obtenir x - 4 \u003d 2y, puis divisez les deux côtés par 2 pour obtenir (x ÷ 2) - 2 \u003d y, la fonction inverse.
Non-fonctions inverses
Tous les inverses de fonctions ne sont pas également des fonctions. Rappelons que la définition des fonctions dit que chaque x n'a qu'une seule valeur y. Bien que l'arc sinus soit l'inverse de la fonction sinus, l'arc sinus n'est pas techniquement une fonction, car les valeurs x ont une infinité de valeurs y correspondantes. C'est également vrai avec y \u003d x 2 et y \u003d √x: la première est une fonction, et la seconde est son inverse, mais la racine carrée donne deux valeurs y correspondantes, positive et négative, ce qui n'en fait pas une vraie fonction .