• Home
  • Chimie
  • Astronomie
  • Énergie
  • La nature
  • Biologie
  • Physique
  • Électronique
  •  science >> Science >  >> Autres
    Comment comprendre la logique mathématique

    Comment comprendre la logique mathématique. La logique mathématique est une branche des mathématiques dérivée de la logique symbolique et comprend les sous-domaines de la théorie des modèles, de la théorie de la preuve, de la théorie de la récursivité et de la théorie des ensembles. Il est étroitement lié à la logique formelle en philosophie initiée par Aristote, mais la logique mathématique est une méthode plus complète de vérification des arguments. La logique mathématique utilise des systèmes de preuve formels qui sont utilisés pour prouver certains théorèmes. Voici comment comprendre la logique mathématique.

    Étudiez la logique sententielle comme la première rencontre avec la logique mathématique. Cela inclut les tables de vérité et l'utilisation de "et", "ou" et "pas" dans la logique symbolique. Ce niveau d'étude doit également inclure la logique du premier ordre, qui ajoute des quantificateurs tels que "pour tous" et "il existe" dans le langage.

    Continuez avec la théorie de la preuve, qui est l'étude de la manipulation symbolique. Cela nécessitera un langage formel comprenant un ensemble de symboles et une syntaxe. Ces éléments comprennent des formules utilisées pour construire des axiomes pour les théories de ce langage.
    Sciencing Video Vault
    Créez le support (presque) parfait: Voici comment créer le support (presque) parfait: Voici comment

    Passez à la théorie des modèles du premier ordre, qui décrit les structures qui satisferont un ensemble d'axiomes. Les formules logiques sont utilisées pour déterminer les ensembles pouvant être définis dans une structure donnée.

    Commencez une étude de la théorie des ensembles. Cela devrait inclure de très grands ensembles infinis pour montrer qu'un "ensemble" est un concept ambigu.

    Abordons ensuite la théorie de la récursivité. Ce champ est l’étude de l’appartenance à un ensemble donné en déterminant ce qui peut être calculé sur cet ensemble en un nombre fini d’étapes. La théorie de la récursivité implique des concepts tels que les structures de degrés, des idées sur la réductibilité et la calculabilité relative.

    © Science https://fr.scienceaq.com